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E V O L U T I O N  OF P E R T U R B A T I O N S  ON T H E  S U R F A C E  

OF A V I S C O E L A S T I C  LIQ UID 

Y u .  A .  B e r e z i n  a n d  L. A .  S p o d a r e v a  I UDC 532.536 

The stability of a layer of a viscoelastic liquid on an inclined plane is studied within the frame- 
work of the model with a time-dependent "memory" in the presence of surface tension. It is 
shown analytically and numerically that these flows can be stable or unstable depending on 
the Reynolds number. Profiles of the free surface are found as functions of the Reynolds and 
Weber numbers. 

The properties of non-Newtonian viscoelastic fluids called second-order liquids are often described on 
the basis of the model with a decaying "memory" [1-4]. It is shown [5-7] that the surface of a layer of 
such a liquid at Reynolds numbers higher than a certain critical value becomes unstable to small long-wave 
perturbations, and the critical Reynolds number for a viscoelastic liquid is smaller than for a Newtonian 
one. Dandapat and Gupta [8] studied the process of formation of solitons on the free surface of a film of a 
second-order liquid moving down an inclined plane at Reynolds numbers higher than the critical value. Using 
decomposition of the initial equations in powers of the small parameter (the ratio of the layer thickness to 
the characteristic spatial scale along the layer), they obtained a nonlinear equation for the free-surface shape 
with account of surface tension. For high Weber numbers characterizing the ratio of surface-tension forces 
to gravity forces, Dandapat and Gupta [8] studied the steady solutions of this equation using methods of 
the qualitative theory of ordinary differential equations and analyzed the character of singular points and 
trajectories in the phase space. In addition, in the approximation of small Weber numbers, small deviations 
of the free-surface shape from its unperturbed state, and small supercritical values, Dandapat and Gupta [8] 
reduced the resultant unsteady equation to the Korteweg-de Vries equation, in which the dispersion length 
increases with increasing effects of viscoelasticity, and conducted a series of numerical calculations using the 
known finite-difference scheme with jumps, which was used in the first works devoted to numerical solution 
of this equation. The formation of solitons from initial perturbations of the form cos0rx ) was examined 
for periodic (judging by the results obtained) boundary conditions. A detailed description of the results of 
analytical and numerical study of the Korteweg-de Vries equation in a wide range of governing parameters 
and the calculation algorithms can be found, for example, in [9-12]. A similar problem of existence of solitons 
on the surface of a thin layer of an incompressible non-Newtonian fluid was studied by Pumir et al. [13] using 
the qualitative and quantitative analysis of equations of a steady structure. 

The objective of the present work is to study a flow of the type of a hydraulic shock on the free surface 
of a film of a viscoelastic liquid moving on an inclined plane in a wide range of Weber numbers and deviations 
of the Reynolds numbers from the critical value. 

Equa t ions  and  B o u n d a r y  Condi t ions .  We consider a two-dimensional motion of a layer of an 
incompressible viscoelastic liquid over a plane inclined at an angle c~ to the horizontal direction. The initial 
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equations in tensor notat ion have the form 

dvi OTij OVi 
P " ~  = Pgi + Oxj OXi O, 

where p = const is the liquid density, gi are the components  of the force of gravity, vi are the components  of 
velocity, and Tij are the components  of the stress tensor, which are wri t ten as 

Ovk 
"iJ = --P~iJ q- ' t -~Xj q- OXi] q- f l ~ X k  q- OXi,] \OXj q- OXk] " q ' - ~ X j  q- -~Xi q- 2 0X i OXj]" 

Here p is the pressure, ~7 is the dynamic viscosity, 2 and 3' are the characteristics of the liquid, ai = Ovi/Ot + 
vj Ovi/Oxj are the components  of acceleration, and (d/dt)i = Ovi/Ot + vkOvi/OXk; the subscripts acquire the 
values of 1, 2, and 3, and summat ion  is performed over repeated subscripts. 

We introduce Cartesian coordinates with the x axis along the inclined plane and the y axis across it and 
dimensionless variables choosing the following scales: the characteristic distances along and across the layer 

(L0 and Ho, respectively), the t ime to = Lo/uo, Po = pgHo sin ct, and v0 = pu 2, where u0 = pgH 2 sin c~/(2r]) 
is the longitudinal velocity of a steady flow on the layer surface. The motion of the liquid considered here is 
described by the equations 

d~lt 
ux + vy = O, 

dt 

dv gLo 
dt u~ 

the components  of the stress tensor are 

gLo 
- -  s i n a +  (Vxx)~ + e- l (vzy)y,  

c o s ~  + (rxy)z + s- l (Ty~)v;  

Tx~ = -p---G-r + ~ee u~ + N[(u~ + a2v~)2 + 4~2'~1 - 2~2_a./ L --~-[] ~ 

~ ( C )  )] a ,  xV + , Txy -- Re ~ L \ d t  / y x 

sin c~ 2v ) d v  ], 
= -P--~r  + ~ee "vy + N[(uy +~2vx)2 + 4r 2] - 2M[u2y +e2(v~ + ( - ~ ) y  ryy 

where e = Ho/Lo, Re = uoHo/ , ,  g =/3/(pH~),  dlI = -3"/(PHo), and Fr = U2o/(gHo) (• is the kinematic 
viscosity). We supplement these equations by the boundary  conditions at the bo t t om and free surface of the 

liquid: 
u = v = O  for y = 0 ;  

r 
ps = O, p,, = ( l+e2Hz2)3/2s inc  ~, Ht + uH~ = v for y = H(x , t ) ,  

where Ps = 7zy cos29v + (1/2)(Tyy - ~-xx) sin29v and pn = Tyy COS 2 99 q- Txx sin 2 c 2 - vzy sin2c2 are the shear 
and normal  to the free surface components  of the stress tensor, tan ~ = r We = r is the Weber 

number,  r is the surface tension, and H(x,  t) is a function that  describes the shape of the free surface. 
Assuming tha t  the layer thickness is significantly smaller than the scale of longitudinal per turbat ions  of 

the free surface and using the known procedure of decomposit ion of the equations and boundary  conditions in 
the pa ramete r  ~ << 1, Dandapa t  and Gup ta  [8] derived an equation for the free-surface shape with accuracy to 

terms of order c 3. Note tha t  it does not contain the constant  fl because of the condition of incompressibility 
of the liquid. The  surface tension in this equation is represented by a te rm proportional  to ~8 We. For high 

Weber numbers  (We ,-~ O(~-2)) ,  the effect of surface tension has the first order in the small pa ramete r  ~. 

With  accuracy to terms of order ~, the equation for the free-surface shape investigated in [8] and in the 

present work acquires the form 

Ht + 2g2Hz  + (2/3)~[A(H)Hz + B(H)Hx~x]x = 0, (1) 

where 
A(H)  = [2(2/5)H 2 + M ) R e H  - cot c~]H 3, B(H)  = ~2 W e H 3 / s i n a .  
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U n s t e a d y  S o l u t i o n s  o f  t h e  M o d e l  E q u a t i o n .  According to Eq. (1), the shape of the free surface 
of a layer of a viscoelastic liquid changes due to nonlinear transfer with velocity U = 2H 2, nonlinear diffusion, 
which can be either positive or negative depending on the sign of A(H),  and a stabilizing action of surface 
tension forces. Linearizing (1) relative to the unper turbed level H = 1 + h (h << 1) and substituting the 

solution in the form h ~ exp i[kx - (wT + iT)k], we obtain that  the phase velocity of small perturbat ions 
c = wT/k = 2 is independent of the wavenumber, and the growth rate of small perturbations is 

~/= (2/3)~k 2 [2(2/5 + M)Re  - ctg a - e 2 We k2/s in  c~] 

(k is the wavenumber). It follows from this formula that  small periodic perturbat ions are stable (~/< 1) or 
unstable (~ > 1) depending on whether  the Reynolds number is greater or smaller than the critical value 
Re, = 5 cot a / ( 4  + 10M). The interval of wavenumbers of unstable perturbat ions is finite: Ak = 0-k , ,  

k, 2 = 2(2 + 5Jil)(Re - Re,)  s ina  
5a2}Ve 

The maximum value of the growth rate 

^/max -= ~(kmax) = 2(2 + 5M)2(Re - Re,)  2 s i n a  
75~ Vv~ 

is reached for 
k~a x = (2 + 5M)(Re  - Re.)  s ina  

5~ 2 We 

As the viscoelasticity parameter  M increases, the critical Reynolds number decreases, and the growth rate 
and the interval of unstable wavenumbers increase. An increase in the Weber number does not change the 
critical Reynolds number, but the maximum growth rate decreases inversely proportionally to We and the 
interval of unstable wavenumbers to We -1/2. 

To study the evolution of finite-amplitude perturbations,  numerical methods should be used. Equa- 
tion (1) was solved using an explicit finite-difference scheme in which the transfer was approximated by an 
upstream one-sided difference, since the coefficient at the derivative Hz equals 2H 2 and is always positive, 
and the remaining terms were approximated by central differences 

(it (Hi - H i - l )  - ~ at H l i  = Hi - 2H~ ~x " ~ (aiHi-2 - biHi-1 + ciHi - diHi+l + eiHi+2), (2) 

where H l i  - H~ +t, Hi --- H~, 5t is the time step, 5x is the coordinate step, ai = Bi_l/2, ei = Bi+l/2, bi = 

Bi+l/2+ 3Bi_l /2-Ai_l /2(~x 2, ci = 3( Bi+l/2+ B i - I / 2 ) - (A i+ l /2+  Ai-1/2)Sx 2, di = 3Bi+l/2+ Bi-1/2-Ai+l /2~x 2, 
and (A, B)i+l/2 = (1/2)[(A, B)i + (A, B)i+I]. 

Since the highest derivative in Eq. (1) has fourth order, the explicit scheme (2) is stable only if the 
condition gt/dx 4 < 1 is satisfied, which requires ra ther  small time steps. At the same time, the use of some 
implicit scheme (for example, the Crank-Nicholson scheme) for increasing stability makes it necessary to solve 
large systems of algebraic equations for grid functions with a five-diagonal matrix. The standard method of 
five-point sweep in the case under consideration requires a restriction on the time step to ensure the diagonal 
prevailing of the matr ix  and, hence, the stability of the sweep. Though this restriction is less rigid than for 
the explicit scheme, the algorithm becomes more complicated; therefore, scheme (2) was chosen. 

To trace the motion and evolution of the shape of the free surface of the hydraulic shock in a viscoelastic 
liquid, a constant level H(0, t) = 1 + b (b > 0) is set at the left boundary  of the computational  domain 
x = 0-Xmax and an unper turbed flow H(xmax, t) = 1 is prescribed at the right boundary; in addition, the 
conditions H~ = Hxz = 0 are set at bo th  boundaries of the computational  domain. The  initial per turbat ion 
was chosen in the form of a smoothed step. If the slope of the step is small, the main role in evolution of the 
per turbat ion  belongs at first to the transfer of an elevation of the free surface with velocity c = 2H 2, which 
depends on the thickness of the liquid layer. Since dc/dH > 0, the velocity of sectors of the per turbat ion 
profile with a higher level of the liquid is greater, and the perturbat ion front becomes steeper with time. This 
growth of the profile steepness corresponds to the increase in the x derivatives of the function H(x , t ) ;  as a 
result, the contribution of terms that  describe diffusion and the effect of surface tension increase. 
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For Re < Re., the width of the perturbat ion front increases, and a smoothed shock of constant width 
can appear. The calculations show that  the per turbat ion profile is monotonic for low surface tension. We also 
note that  the front contains a certain "foot" extended downstream, which is a consequence of the nonlinear 
character of diffusion. If the surface tension is rather large (We ,,- ~-2), a smoothed shock with a constant 
front width is still gradually formed, but perturbations appear on the profile upstream and downstream of 
the point of maxinmm steepness. Thus, the height of the free surface in a small vicinity of the shock zone 
is greater in the upstream region than in the per turbed part  of the flow far behind the front, and in the 
downstream region it is smaller than in the free stream far ahead of the front. 

For Re > Re,,  instability of the spatial s tructure of the shock arises, but this instability can be 
stabilized by surface-tension forces. Figure 1 shows the calculated profiles of the free surface of a viscoelastic 
liquid for Re = 2.5 > Re. and M -- 0.1 for several values of the Weber number (curves 1-3 correspond to 
the free-surface shape at times t = 0, 5, and 10). When there is no surface tension (Fig. la) ,  tile flow is 
strongly unstable, and the profile shape has a clear saw-tooth character. ~Ve note that  this shape of the 
profile is a consequence of physical rather than numerical instability, since each oscillation contains at least 
ten points of the finite-difference grid, and the number of time steps is about a hundred thousand. The effect 
of surface tension is manifested in stabilization of instability and noticeable smoothing of the profile of the 
propagating perturbation.  The layer thickness in the region behind the shock remains almost the same. Near 
the shock, when approaching it from the upstream region, spatial oscillations are formed on the profile, and 
the amplitude of the first oscillation is not small (Fig. lb).  The slope of the front of the smoothed shock 
is greater than the slope of the profile of the initial perturbation.  Ahead of the front, when approaching it 
from the free stream, a small region is formed, where the level of the liquid is lower than in the unperturbed 
stream. As the Weber number increases (Fig. lc and d), the uonmonotonic structure of the disturbance 
front is retained. The width of the oscillation region increases, the amplitude of oscillations behind the front 
decreases, and the "valley" in the liquid surface ahead of the front increases. The slope of the free-surface 
profile in the shock region decreases when passing to high Weber numbers. 

We also calculated the evolution of perturbations of the above-mentioned shape with increasing 
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Reynolds number. Figure 2 shows the results corresponding to the viscoelasticity parameter M = 0.1, 
Weber number We = 100, and Reynolds numbers Re = 5 (a) and 10 (b). A comparison of the profiles of 
the free surface of the liquid for Re -- 2.5 and 5 shows that, as the Reynolds number increases, a growth in 
the surface elevation behind the shock and a greater depth of the liquid ahead of the shock are observed. 
In addition, when moving to the region ahead of the shock, the layer thickness becomes more unperturbed 
after the decrease mentioned and acquires the value H -- 1. The slope of the front increases. It follows from 
Fig. 2b that the free surface acquires the form of smooth spatial oscillations of high amplitude: Hmax ~ 1.45 
and Hmin ~ 0.7. In the course of time, the perturbed region becomes similar to a set of "solitons" obtained 
in [8] by solving the Korteweg-de Vries equation with periodic initial data and boundary conditions, the 
amplitudes of these solitons increase monotonically, and at the time t -- 10, the maximum thickness of the 
layer in the first oscillation is Hmax ~ 1.4, and the minimum thickness of the layer is Hmin ~ 0.5. 
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